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I. INTRODUCTION

Tendon-Driven Continuum robots (TDCRs), are adept at
navigating cluttered environments due to their flexible and
compliant backbones. While multi-segment designs allow
variations in backbone curvature, they also increase the
complexity of actuation unit design and tendon control. We
propose the use of a single-segment long TDCR, leveraging
obstacle contacts to adjust curvature, along with a motion
planner [1] to determine the sequence of actuation inputs
to reach a target orientation. A major bottleneck for the
computational efficiency for these searches is the forward
model of these TDCRs. We propose a lookahead motion
planner adapted from Lazy Receding Horizon A* (LRA*) [2]
that employs a novel crude model for lazy estimation of the
robot shape, and consequently the cost-to-go. The proposed
method aims to direct the search effectively towards promis-
ing regions while minimizing the need for costly full model
computations.

Modeling the behavior of TDCRs under contact forces is
complex due to the need to consider both tendon and contact
interactions. Its continuous backbone requires an infinite
number of parameters for exact representation which can be
reduced by applying geometrical assumptions, allowing for
simpler state-space representations. A backbone experiencing
multiple contacts can be divided into a series of portions,
each experiencing a force at the tip. Linear curvature pro-
files approximated by Euler arc splines (EAS) have been
demonstrated [3] to approximate the backbone shape under
the influence of a tip force. Using piecewise first-order
polynomials [4] for the curvature profile has been shown
to provide a good approximation of the robot shape, this
representation is yet to be utilized to provide computationally
efficient approximation of the TDCRs contact mechanics. By
utilizing a series of EAS for the backbone representation, the
proposed crude model employs a simplified parameterization
to faster computations.

II. LOOKAHEAD SEARCH

We consider the same motion planning problem as defined
in [1] of a planar single-segment TDCR in a 2D workspace,
W ∈ R2, populated with o known obstacles. A joint-space
value, q = (ℓseg, ℓten) denotes the total inserted length of the
robot in the workspace and the tendon length, respectively.
A joint-space action δ = (δseg, δten) adjusts the robot’s base
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Fig. 1: Navigating a cluttered environment to reach a target by a single-
segment (a) with obstacle avoidance : cannot reach the target pose, (b) with
CAN : reaches target pose successfully.

and tendon lengths respectively by insertion/retraction and
pulling/releasing actions. We will use σ to denote a sequence
of such joint-space actions. Actions leading to outcomes
that fail to meet the problem’s constraints by the model are
termed invalid actions, whereas those that produce feasible
solutions are classified as valid actions. The goal is to find a
sequence of valid joint space actions σ that when applied to
an initial joint-space value qinit, align the robots end-effector
position p(qinit + σ) and orientation ψ(qinit + σ) with tar-
get position and orientations, within specified tolerances for
position ε and orientation ω.

Algorithm: The motion planner utilizes a best-first
search on a discretized representation of the continuous
joint space. Each node n is uniquely identified by the pair
(qn, κn), where qn = qinit + δ1 + . . .+ δk denotes a joint-
space vector and κn represents the individual curvatures of
the robot’s sub-segments. While the primitive operations,
data structures, and heuristic remain consistent with those
proposed in [1], the main algorithm is adapted to employ a
hybrid model evaluation strategy for each node, alternating
between the computationally expensive but accurate full
model [5] and the faster, less accurate crude model.

Initialization involves populating an open list with the
node corresponding to qinit, followed by expansion in a
best-first manner according to the heuristic estimate of each
node. Nodes within a certain depth α from the last full
model evaluation undergo shape approximation using the
crude model . The estimated end-effector location from this
approximation provides a heuristic estimate h̄(n), which
is then inserted into the open list. Upon a node’s depth
exceeding α (indicated by its budget b[n]), Kf (n) is used to
evaluate its true heuristic value h(n), which is then reinserted
into the open list for re-prioritization. Node expansion occurs
only upon reselection, and if the crude model fails, the full
model is utilized to re-evaluate the node, resetting its budget
value to zero. This iterative process continues until either a
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Fig. 2: Diagrammatic representation of a TDCR interacting with obstacles
in different scenarios (i) as a contact-free configuration (ii) in-contact with
a freely moving end (iii) in-contact configuration with its tip in contact with
an obstacle.

node evaluated by the full model reaches the goal, or the
maximum number of search iterations is attained, signifying
an unsuccessful search.

Proposed Crude Model: We propose a crude model for
node expansion, assuming the contact profile of neighboring
node c mirrors that of node n. This method represents
the backbone with EAS curves, creating a solvable model.
Contact points divide the segment, each with a tip force. If
the last disk has no contact, a contact-free portion exists.
We use CC and EAS to describe the segment’s curvature,
requiring one and two curvature parameters for in-contact
and contact-free portions, respectively. The segment between
the base and a subsequent contact point, and between every
pair of contact points, is represented as an EAS [3]. Between
a contact point and the last disk, the segment is modeled as a
CC arc. For a contact-free configuration, the entire segment
is depicted as a CC arc.

For a given node n, we denote Sn = {m1,m2, ..mk}
as the subsegments in contact with obstacles, where mi =
0, 1, 2, ..m indicates the index of the disk in contact with
an obstacle. This set is determined by assessing whether
the positions of the disks fall within a specified tolerance,
denoted as ϵcontact, relative to the proximity of all obstacles. In
the event of a configuration being contact-free , Sn is empty.
Consequently, three possible scenarios arise, as delineated
in Fig. 2. The optimization structure follows that of the
full model [1], with r curvature parameters as unknowns
instead of m. Initialization involves using node n’s curvature
parameters as an initial guess, approximated as piecewise
linear and constant curvature profiles using linear regression.
If the contact profile shifts between nodes n and c, indicating
model failure, the full model is computed to accurately
determine curvature and contact profile.

III. EMPIRICAL EVALUATION

In our study, we examine the computational efficiency
of lookahead search techniques applied to the case studies
detailed in [1]. The baseline method involves a greedy search
without lookahead, where the forward model (full model ) is
executed at every node during node expansion (Msearch, f).
To evaluate the effectiveness of the proposed lookahead
search, particularly the proposed model (crude model ),
we conduct experiments using two different models for
heuristic estimation: 1) the proposed crude model , denoted

as Mlookahead, c, and 2) the same full model as in [5], but with
relaxed optimization constraints, referred to as Mlookahead, f.
The full model considers function and constraint tolerances
of the order 1 × 10−10 to ensure the obtained robot shape
is precise, while both models used for node approximation
consider tolerances of the order 1× 10−6. Both approaches
employ a lookahead depth of α = 5 nodes.

We perform 75 searches in two workspaces from [1]:
one with uniform circular obstacles (W1) and another re-
sembling the inside of a jet engine (W2). Implemented
in C++ using NLopt’s sequential quadratic programming
(SQP) algorithm, models run on an x86 16-core processor
at 2.2 GHz. Results are tabulated in Table I. Inclusion of
lookahead search reduces search times compared to the
baseline greedy search, with average model computation
decreasing due to lightweight models. Slightly lower success
rates suggest errors in lightweight model approximations
may divert the search from solution. Investigating the effect
of the lookahead factor and incorporating duplicate detection
to avoid prolonged exploration of nearby nodes may alleviate
this issue.

The performance of the two lookahead searches is com-
parable. While it’s plausible to suggest that relaxing tol-
erances could enhance the computation time of the full
model, leveraging the proposed crude model provides an
additional advantage of being applicable to static models
as it respects the physics behind TDCR bending [3]. In
static models, achieving force and moment balance equations
necessitates careful consideration, making the relaxation of
tolerances less straightforward. In future work, we intend
to assess the performance of this search approach on static
models. Furthermore, we aim to investigate the impact of
hyperparameters such as α and tolerances to further refine
and optimize the search process.

TABLE I: Search Times (in s) and success rate (in brackets in %) for
workspaces W1 and W2.

Avg. Median Max.

W1

Msearch, f (82.7%) 89.9 19.1 575.7
Mlookahead, f (74.7%) 88.2 19.6 431.8
Mlookahead, c (74.7%) 85.7 16.3 379.5

W2

Msearch, f (86.7%) 264.1 98.1 2264.9
Mlookahead, f (85.3%) 186.9 66.7 1644.5
Mlookahead, c (84.0%) 184.5 51.9 1747.3
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