Parallel Continuum Robots
Research at the intersection of parallel robots and continuum robots
In the scope of this project, we are researching tendon driven continuum robots (TDCR) that are working collaborative in parallel coupled structures. The resulting structures can be classified as parallel continuum robots and consist of multiple individual continuous kinematic chains, that are actuated in bending utilizing tendons routed along their backbones. The parallel setup aims to overcome the drawbacks of tendon driven continuum robots such as a relatively low load capacities and position accuracies, while maintaining their inherent compliance and dexterity.
We want to answer three key questions!
The studied structures could allow for scenarios in which multiple tendon driven continuum robots are individually inserted into a highly constrained workspace through different insertion paths, before coupling into a parallel manipulator to increase the stiffness and accuracy of the overall system. We envision that such a robotic system could for instance be used for inspections and repair tasks of aircraft engines, where the continuum robots enter through borescope holes and couple into a parallel robot to inspect and repair the turbine’s blades.